

 Navigation

 	
 index

 	
 next |

 	django-uuidstore 0.0.1 documentation

Welcome to django-uuidstore’s documentation!

Contents:

	Installation
	Configuration

	South Migrations

	Getting Started
	Registering your model

	Monkey patching

	Denormalisation

	Denormalisation to a UUID field

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-uuidstore 0.0.1 documentation

Installation

Use your favorite Python installer to install it from PyPI:

$ pip install django-uuidstore

If you are using pip version 1.4 or later you’ll need to explicitly allow
pre-release installation:

$ pip install --pre django-uuidstore

Or get the source from the application site:

$ hg clone https://bitbucket.org/mhurt/django-uuidstore
$ cd django-uuidstore
$ python setup.py install

Configuration

Add "uuidstore" to your INSTALLED_APPS setting like this:

INSTALLED_APPS = {
 ...
 'uuidstore'
}

	For Django 1.7 users, run
python manage.py migrate uuidstore
to create the models.

	If you’re using South, please see South Migrations.

	Otherwise simply run python manage.py syncdb.

South Migrations

If you’re using Django 1.7 you won’t need to use South as migrations are built in.

If you’re using an earlier version of Django with South 1.0 the provided
south_migrations will be automatically detected.

For earlier versions of South you’ll need to tell explicitly define which
migrations to use by adding to, or creating, the SOUTH_MIGRATION_MODULES in
your settings file:

settings.py
...
SOUTH_MIGRATION_MODULES = {
 'uuidstore': 'uuidstore.south_migrations',
}

Don’t worry, though, as running running a migrate will complain loudly if
you’ve forgotten this step.

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	django-uuidstore 0.0.1 documentation

Getting Started

Registering your model

Somewhere at the end of your models.py add the following:

models.py
from django.db import models

class MyModel(models.Model):
 title = models.Charfield(max_length=60)

import uuidstore.registry
uuidstore.registry.register(MyModel)

With the code above MyModel is registered with uuidstore. When you save an
instance of your model for the first time, and new ObjectUUID will be created
containing a UUID and a generic-relation to your model instance.

Let’s see how that works by running python manage.py shell:

>>> from myapp.models import MyModel
>>> from uuidstore.models import ObjectUUID
>>>
>>> # Create an instance of your model
>>> instance = MyModel.objects.create(title='Foo')
>>>
>>> # Retrieve the related ObjectUUID
>>> stored = ObjectUUID.objects.get_for_instance(instance)
>>> stored.uuid
u'472eca67-3726-4fbf-8e94-5a48849b3e0c'

In this case we can see that the ObjectUUID has been created. The UUID itself
is only accessible by explicitly querying ObjectUUID. For most uses you’ll
probably want the UUID accessible via the model instance itself. The following
examples show how this is achieved.

Monkey patching

This example shows how to both register your model and have the UUID
accessible as an attribute of your model.

models.py
from django.db import models

class MyModel(models.Model):
 title = models.Charfield(max_length=60)

import uuidstore.registry
uuidstore.registry.register(MyModel, uuid_descriptor='uuid')

The only thing we’ve changed with this code is to add a keyword argument
uuid_descriptor to the registration call. This works as the previous
example, but this time the next instantiation of a MyModel object will look up
its UUID and attach it as a property of MyModel with the name you supplied.

Let’s see how that works by running python manage.py shell:

>>> from myapp.models import MyModel
>>>
>>> # Create an instance of your model
>>> instance = MyModel.objects.create(title='Bar')
>>>
>>> # Unlike the first example, the UUID is now attached to your instance:
>>> instance.uuid
u'5c8ddcab-05e6-49c1-8f0d-4530dec8edb9'

This works well for cases where you are unable to modify the base model itself,
but it’s not very efficient as we’re invoking a ContentType lookup for each
instance.

Denormalisation

Here we’ll cut out some of the inefficiency of monkey patching by denormalising
the UUID to a CharField.

models.py
from django.db import models

class MyModel(models.Model):
 title = models.Charfield(max_length=60)
 uuid = models.CharField(max_length=36, blank=True, editable=False)

import uuidstore.registry
uuidstore.registry.register(MyModel, uuid_descriptor='uuid')

Let’s see how that works by running python manage.py shell:

>>> from myapp.models import MyModel
>>>
>>> # Create an instance of your model
>>> instance = MyModel.objects.create(title='Fizz')
>>>
>>> instance.uuid
u'e8a245fc-31ef-4160-906d-b6ba47449a26'

Denormalisation to a UUID field

models.py
from django.db import models
from django_extensions.db.fields import UUIDField

class MyModel(models.Model):
 title = models.Charfield(max_length=60)
 uuid = UUIDField(
 auto=False,
 blank=True,
 null=True,
 unique=True,
 editable=False
)

import uuidstore.registry
uuidstore.registry.register(MyModel, uuid_descriptor='uuid')

In this case we’ve replaced the CharField from the previous example with the
UUIDField from django-extensions.

Let’s see how that works by running python manage.py shell:

>>> from myapp.models import MyModel
>>>
>>> # Create an instance of your model
>>> instance = MyModel.objects.create(title='Buzz')
>>>
>>> instance.uuid
u'5da4a32e-0bb8-47ab-82fd-35110cf340a2'

Hint

You can use any suitable UUID field for this, provided
that uuidstore can set its value after it has been saved.
i.e. any auto behaviour is disabled, and you’ve set blank=True, null=True.

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	django-uuidstore 0.0.1 documentation

Index

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

